紫外工控论坛

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

搜索
查看: 2098|回复: 0

[搬运] 激光原理及应用论文激光原理及应用论文

[复制链接]
hunter_love 发表于 2012-6-4 21:52:42 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
2009-12-06 15:36:31 发布
激光
   激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。

      什么叫做“受激辐射”?它基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性。

激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。

激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件

激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。

激光的高相干性:相干性主要描述光波各个部分的相位关系。正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。

  目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。

  经过30多年的发展,激光现在几乎是无处不在,它已经被用在生活、科研的方方面面:激光针灸、激光裁剪、激光切割、激光焊接、激光淬火、激光唱片、激光测距仪、激光陀螺仪、激光铅直仪、激光手术刀、激光炸弹、激光雷达、激光枪、激光炮……,在不久的将来,激光肯定会有更广泛的应用。

  激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的定向能武器。根据作战用途的不同,激光武器可分为战术激光武器和战略激光武器两大类。武器系统主要由激光器和跟踪、瞄准、发射装置等部分组成,目前通常采用的激光器有化学激光器、固体激光器、CO2激光器等。激光武器具有攻击速度快、转向灵活、可实现精确打击、不受电磁干扰等优点,但也存在易受天气和环境影响等弱点。激光武器已有30多年的发展历史,其关键技术也已取得突破,美国、俄罗斯、法国、以色列等国都成功进行了各种激光打靶试验。目前低能激光武器已经投入使用,主要用于干扰和致盲较近距离的光电传感器,以及攻击人眼和一些增强型观测设备;高能激光武器主要采用化学激光器,按照现有的水平,今后5—10年内可望在地面和空中平台上部署使用,用于战术防空、战区反导和反卫星作战等。

   
激光的其它特性:   
  激光有很多特性:首先,激光是单色的,或者说是单频的。有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的。其次,激光是相干光。相干光的特征是其所有的光波都是同步的,整束光就好像一个“波列”。再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象。

激光(LASER)是上实际60年代发明的一种光源。LASER是英文的“受激放射光放大”的首字母缩写。激光器有很多种,尺寸大至几个足球场,小至一粒稻谷或盐粒。气体激光器有氦-氖激光器和氩激光器;固体激光器有红宝石激光器;半导体激光器有激光二极管,像CD机、DVD机和CD-ROM里的那些。每一种激光器都有自己独特的产生激光的方法。

激光技术
激光具有单色性好、方向性强、亮度高等特点。现已发现的激光工作物质有几千种,波长范围从软X射线到远红外。 激光技术的核心是激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。根据不同的使用要求,采取一些专门的技术提高输出激光的光束质量和单项技术指标,比较广泛应用的单元技术有共振腔设计与选模、倍频、调谐、Q开关、锁模、稳频和放大技术等。

为了满足军事应用的需要,主要发展了以下5项激光技术:①激光测距技术。它是在军事上最先得到实际应用的激光技术。20世纪60年代末,激光测距仪开始装备部队,现已研制生产出多种类型,大都采用钇铝石榴石激光器,测距精度为±5米左右。由于它能迅速准确地测出目标距离,广泛用于侦察测量和武器火控系统。②激光制导技术。激光制导武器精度高、结构比较简单、不易受电磁干扰,在精确制导武器中占有重要地位。70年代初,美国研制的激光制导航空炸弹在越南战场首次使用。80年代以来,激光制导导弹和激光制导炮弹的生产和装备数量也日渐增多。③激光通信技术。激光通信容量大、保密性好、抗电磁干扰能力强。光纤通信已成为通信系统的发展重点。机载、星载的激光通信系统和对潜艇的激光通信系统也在研究发展中。④强激光技术。用高功率激光器制成的战术激光武器,可使人眼致盲和使光电探测器失效。利用高能激光束可能摧毁飞机、导弹、卫星等军事目标。用于致盲、防空等的战术激光武器,已接近实用阶段。用于反卫星、反洲际弹道导弹的战略激光武器,尚处于探索阶段。⑤激光模拟训练技术。用激光模拟器材进行军事训练和作战演习,不消耗弹药,训练安全,效果逼真。现已研制生产了多种激光模拟训练系统,在各种武器的射击训练和作战演习中广泛应用。此外,激光核聚变研究取得了重要进展,激光分离同位素进入试生产阶段,激光引信、激光陀螺已得到实际应用。 添加评论


评论读取中...
请登录后再发表评论!

取消
yraxjx | 2009-12-06 16:01:54
有0人认为这个回答不错 | 有0人认为这个回答没有帮助
光电子技术科学

培养在光电子技术科学领域具有宽厚的理论基础、扎实的专业知识和熟练的实验技能,德、智、体、美全面发展的高级光电子技术科学人才,使学生具有在光学、光电子学、激光科学、光通信技术、光波导与光电集成技术、光信息处理技术、计算机应用技术等领域开展创新性基础理论研究以及从事设计、开发应用和管理等工作应具备的理论和技术基础。 本专业以“国家物理学基础人才培养基地”、教育部“光电信息技术科学”重点实验室为学科依托,学术水平高,师资力量雄厚。本专业现有教授31 名(其中中科院院士2 名,博士生导师20名,“长江学者奖励计划”特聘教授4名)。学科覆盖博士点4个、硕士点9个、博士后流动站3个、国家级重点学科2个,是国家“211工程”和“教育振兴计划”重点建设学科,具有培养理工结合复合型光电子技术科学人才的优越条件。

学习的主要专业课程:光电子技术、光电子器件及系统、信号与系统、通信原理与技术、高等光学、应用光学、光电子学、计算机及网络技术、电子电路与技术、电动力学、量子力学、半导体物理等。

毕业生去向:继续攻读硕士、博士学位;或到信息产业部门、中科院及有关研究所、电信部门、高等院校、企事业单位及有关公司,主要从事光学、光电子学、光电子技术科学、光电信息工程与技术、光通信工程与技术、光电信号检测处理与控制技术等领域的研究、设计、开发、应用和管理等工作。

------------------------------------------------

在微电子技术蓬勃发展的同时,人们发现可以利用光电各自的优势来为我们服务。比如激光器,光电探测器,太阳电池如等方面都需要光电结合。这就是早期的光电子学。随着光电子学的发展,人们研究完全利用光来处理信息,于是诞生了光子学。所以可以说,先有了光电子学,又有了光子学。而最终的发展会是光电的再次统一,即更高一个层次上的光电子学。现在正在发展单电子技术和单光子技术,那时信息的载体不再是束流,而是单个的粒子。光子和电子都是利用量子力学的概念,区别只是波长不同而已。我想我们在二十一世纪肯定会走到这一步。那时既不能叫光子信息技术,也不能叫电子信息技术,应该叫量子信息技术。

由于光子具有电子所不具备的许多特性所以光子学有它独特的优势。尤其在信息领域。比如通信,我们现在大部分主干网用的都是光纤,信息的载体都是光。由于密集波分复用技术的发展,一根头发丝粗细的光纤就可以传输一亿门电话线路。这是电缆无法比拟的 。再如信息存储技术,光盘由VCD发展到DVD,容量增大了好几倍,未来如果研制出能够商用的蓝光激光器,采用蓝光波段的光来作为信息的载体,就又可以使同样大小的光盘的容量增大近十倍。而且光具有相干性,可以实现全息存储,在不到一个平方厘米的芯片上,我们可以把北京图书馆的所有的书都存进去。在计算机方面,未来的发展趋势是光要进入计算机中,发挥光子的优势实现开关的互联,利用光来消除电子传输带来的瓶颈效应。

光电子技术

光电子学是指光波波段,即红外线、可见光、紫外线和软X射线(频率范围3×1011Hz~3×1016Hz或波长范围1mm~10nm)波段的电子学。光电子技术在经过80年代与其相关技术相互交叉渗透之后,90年代,其技术和应用取得了飞速发展,在社会信息化中起着越来越重要的作用。

在光盘技术的促进下,近年来可见光半导体激光二极管和发光二级管得到了较快的发展。蓝绿光可见光半导体激光二级管(LD)和蓝绿光半导体发光二极管、黄橙红光可见光激光二极管和高亮度黄橙红绿光发光二极管都已商品化。今后的发展需要继续解决提高亮度,降低价格,提高使用寿命等问题。

近红外半导体激光和发光二极管的发射波长为0.8~1.0μm。近红外半导体激光二极管主要用于光纤通信和作为固体激光器的泵浦源(替代闪光灯泵浦源)。在1.3μm和1.55μm近红外半导体激光二极管商品化之后,其发展势头受到很大影响,甚至出现了停止发展的迹象。随着短距离局域网和二极管泵浦固体激光器的迅猛发展,又出现了新的发展。目前研究开发主要集中在单频工作、模式稳定以及提高输出功率等方面。近红外发光二极管主要有超发光二极管和谐振腔发光二极管。超发光二极管是光纤陀螺仪的最佳自选光源,与一般的发光二极管相比,可提供较高的输出功率和相对窄的发射谱。目前,在50mA工作电流下,单管超辐射输出功率的研究水平最高达到50MW,最窄谱宽为15nm。谐振腔发光二极管是一种有前途的发光二极管,其实验和理论效率比传统发光二极管高5~10倍。

1.3μm和1.55μm近红外半导体激光和发光二极管是现行通信系统、高速光纤通信系统的重要光器件,已成为广为研究开发的光源。日本NEC已开发出在单晶片上制造不同发射波长的近红外激光二极管,采用它可大大降低多波长长途通信设备的价格。近年来,国外又相继开发出半导体孤子激光器、量子阱线或点激光器和垂直腔表面发射激光器等新型半导体激光二极管。

激光技术是一项前沿科学技术发展不可缺少的支柱。作为光电子主导产品的激光器的发展,经历了原理上的四次变革,体积日益变小,功率不断增大,可靠性和功率得到了很大的提高。半导体二级管激光器和固体激光器技术和发展十分迅速,其中最为突出的进展是固态化。现今,固体激光器的平均输出功率已从百瓦级提高到了千瓦级。半导体激光器的功率也有很大提高,其结构和其他性能也正在经历重大变化。与此同时,还开发出了实用价值高的新波长和宽带可调谐激光器,包括对人眼无伤害的1.54μm和2μm的激光器、蓝光激光器和X光激光器。

光纤是随着光通信的发展而不断发展的,各种结构和类型的光纤支持着光通信产业的发展。目前,单根光纤传输的信息量已达到万亿位。光纤作为光通信信息传输的介质,它的色散和损耗将直接影响到通信系统的传输容量和中继距离,而常规的单模光纤已不能满足新一代通信技术的要求,因此光纤技术又有了新的发展。迄今,光纤已经经历了由短波长(0.85μm)到长波长(1.3~1.55μm),由多模到单模光纤以及特种光纤的发展过程,并开发出了色散移位光纤、非零色散光纤和色散补偿光纤。

平板显示(FPD)技术包括液晶显示(LCD)、等离子体显示(PDP)、电致发光显示(EL)、真空荧光显示(VFD)和发光二极管显示(LED)等,除在民用领域的广泛应用外,已在虚拟显示、高清晰度显示、语言和图形识别等军用领域应用。近年来,液晶显示以及其他平板显示器件和技术正在大力地改进,如为解决等离子体显示发光效率、亮度、寿命、光串扰和对比度等问题,正在进行诸如大面积精细图形制作和保护层等工艺方面的改进,并取得了较快进展。从整体来说,平板显示技术将继续向着彩色化、高分辨率、高亮度、高可靠、高成品率和廉价方向发展。

随着半导体技术的迅速发展,各种类型的光电探测器,如电荷耦合器件、光位置敏感器件、光敏阵列探测器等应运而生,取得了重大进展。进入90年代,光电探测器的发展方向除了开发高速响应光电 探测器外,其重点是开发焦平面阵列为代表的光电成像器件。红外焦平面阵列制作技术的日臻完善,使红外探测技术进入了第二代。当前,降低成本是红外探测器在民用领域得到广泛应用的关键。21世纪,红外焦平面阵列开发方向,一是在现有基础上提高分辨率,二是开发多功能和智能化焦平面阵列。

随着光通信、光信息处理、光计算等技术的发展,加之材料科学和制造技术的进展,使得在单一结构或单片衬底上集成光学、光电和电子元器件成为可能,形成具有单一功能或多功能的光电子集成回路(OEIC)和集成光路(IOC)。目前,商品化的集成光路产品有调制器、开关和分路器以及采用集成光路相干通信系统、光纤陀螺、激光光纤多普勒干涉仪等系统,以及用于光纤传输试验的单片集成光电子集成回路。预计到2020年,光电子集成回路和集成光路的发展速度将相当于20世纪70年代的微电子技术,多功能集成光学器件和光电子集成器件将系列化,集成光学信号处理速度将达到1GHz。

我国光电子行业在科研上起步较早,也有一批水平较高的应用成果,其中光纤通信的发展尤快。在国防上的应用也开展较早,如靶场用的激光、红外、电视等光测设备,以及红外导引装置、红外热像仪、激光测距仪、微光夜视仪等。但民用市场开发较晚,真正能形成较大生产规模的产品不多。 我国在"八五"计划期间对一些光电器件企业进行了技术改造,已在"九五"计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设。 添加评论


评论读取中...
请登录后再发表评论!

取消
ttxy2010ttxy | 2009-12-06 16:28:40
有0人认为这个回答不错 | 有0人认为这个回答没有帮助
给您一篇关于激光原理及应用的论文,您可以做为借鉴,希望对您有一定的帮助

激光技术在金属加工行业的应用

  激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,现在已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。目前已成熟的激光加工技术包括:激光快速成形技术、激光焊接技术、激光打孔技术、激光切割技术、激光打标技术、激光去重平衡技术、激光蚀刻技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术。

  激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成果,根据零件的CAD模型,用激光束将光敏聚合材料逐层固化,精确堆积成样件,不需要模具和刀具即可快速精确地制造形状复杂的零件,该技术已在航空航天、电子、汽车等工业领域得到广泛应用。

  激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。现代的激光成了人们所幻想追求的“削铁如泥”的“宝剑”。

  激光焊接技术具有溶池净化效应,能纯净焊缝金属,适用于相同和不同金属材料间的焊接。激光焊接能量密度高,对高熔点、高反射率、高导热率和物理特性相差很大的金属焊接特别有利。激光焊接,用比切割金属时功率较小的激光束,使材料熔化而不使其气化,在冷却后成为一块连续的固体结构。激光在工业领域中的应用是有局限和缺点的,比如用激光来切割食物和胶合板就不成功,食物被切开的同时也被灼烧了,而切割胶合板在经济上还远不合算。

  激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度最大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。

  激光打标技术是激光加工最大的应用领域之一。激光打标是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标方法。激光打标可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。准分子激光打标是近年来发展起来的一项新技术,特别适用于金属打标,可实现亚微米打标,已广泛用于微电子工业和生物工程。

  激光去重平衡技术是用激光去掉高速旋转部件上不平衡的过重部分,使惯性轴与旋转轴重合,以达到动平衡的过程。激光去重平衡技术具有测量和去重两大功能,可同时进行不平衡的测量和校正,效率大大提高,在陀螺制造领域有广阔的应用前景。对于高精度转子,激光动平衡可成倍提高平衡精度,其质量偏心值的平衡精度可达1%或千分之几微米。

  激光蚀刻技术比传统的化学蚀刻技术工艺简单、可大幅度降低生产成本,可加工0.125~1微米宽的线,非常适合于超大规模集成电路的制造。

  激光微调技术可对指定电阻进行自动精密微调,精度可达0.01%~0.002%,比传统加工方法的精度和效率高、成本低。激光微调包括薄膜电阻(0.01~0.6微米厚)与厚膜电阻(20~50微米厚)的微调、电容的微调和混合集成电路的微调。

  激光存储技术是利用激光来记录视频、音频、文字资料及计算机信息的一种技术,是信息化时代的支撑技术之一。

  激光划线技术是生产集成电路的关键技术,其划线细、精度高(线宽为15~25微米,槽深为5~200微米),加工速度快(可达200毫米/秒),成品率可达99.5%以上。

  激光清洗技术的采用可大大减少加工器件的微粒污染,提高精密器件的成品率。

  激光热、表处理技术包括:激光相变硬化技术、激光包覆技术、激光表面合金化技术、激光退火技术、激光冲击硬化技术、激光强化电镀技术、激光上釉技术,这些技术对改变材料的机械性能、耐热性和耐腐蚀性等有重要作用。

  激光相变硬化(即激光淬火)是激光热处理中研究最早、最多、进展最快、应用最广的一种新工艺,适用于大多数材料和不同形状零件的不同部位,可提高零件的耐磨性和疲劳强度,国外一些工业部门将该技术作为保证产品质量的手段。

  激光包覆技术是在工业中获得广泛应用的激光表面改性技术之一,具有很好的经济性,可大大提高产品的抗腐蚀性。

  激光表面合金化技术是材料表面局部改性处理的新方法,是未来应用潜力最大的表面改性技术之一,适用于航空、航天、兵器、核工业、汽车制造业中需要改善耐磨、耐腐蚀、耐高温等性能的零件。

  激光退火技术是半导体加工的一种新工艺,效果比常规热退火好得多。激光退火后,杂质的替位率可达到98%~99%,可使多晶硅的电阻率降到普通加热退火的1/2~1/3,还可大大提高集成电路的集成度,使电路元件间的间隔缩小到0.5微米。

  激光冲击硬化技术能改善金属材料的机械性能,可阻止裂纹的产生和扩展,提高钢、铝、钛等合金的强度和硬度,改善其抗疲劳性能。

  激光强化电镀技术可提高金属的沉积速度,速度比无激光照射快1000倍,对微型开关、精密仪器零件、微电子器件和大规模集成电路的生产和修补具有重大意义。使用该技术可使电镀层的牢固度提高100~1000倍。

  激光上釉技术对于材料改性很有发展前途,其成本低,容易控制和复制,有利于发展新材料。

  激光上釉结合火焰喷涂、等离子喷涂、离子沉积等技术,在控制组织、提高表面耐磨、耐腐蚀性能方面。激光在电子工业中也得到广泛应用。可以用它来进行微型仪器的精密加工,可以对脆弱易碎的半导体材料进行精细的划片,也可以用来调整微型电阻的阻值。随着激光器性能的改善和新型激光器的出现,激光在超大规模集成电路方面的应用已经成为许多其他工艺所无法取代的关键性技艺,为超大规模集成电路的发展展现出令人鼓舞的前景。

  激光技术是高科技的产物,其产生又推动了科学研究的深入发展,并开拓出许多新的学科领域,如非线性光学、激光光谱学、激光化学、激光生物学等。激光被用来研究与生命密切相关的光合作用、血红蛋白、DNA等的机制。激光还将成为时间和长度的新标准,以后任何高精度的钟表和米尺都可以用某一特定波长的激光束来标定。

  激光在核能应用上也将大显身手。乐观的专家们估计,到2020年强大的激光会产生安全经济的热核聚变,这类似恒星内部的核反应过程。如果实现,热核聚变将带来巨大无比的社会和经济效益,能源危机亦将不复存在。到那时,一桶水中的氢聚变后所产生的电力足够一个城市使用。

  目前,激光技术已经融入我们的日常生活之中了。在未来的岁月中,激光会带给我们更多的奇迹.
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


--------------------------------------------------------------------------------------------------------------------
本站是工控技术交流站点,论坛内容均为网络收集或会员所发表,并不代表本站立场,会员拥有该内容的所有权力及责任!
本站内容如有侵犯您的版权,请按下面方式联系本站管理员,我们将及时删除处理
管理员:冰糖 QQ:5483695(请直击主题), Mail:admin#ziwai.net(#改成@) 其它非本人.
拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论!

QQ|Archiver|手机版|小黑屋|紫外工控论坛. ( 苏ICP备11032118号-1 )

GMT+8, 2024-4-30 02:03 , Processed in 0.343752 second(s), 21 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表